Parallel Chess Al Engine

Priyanshi Garg, Teddy Liang
May 04, 2024

1 Summary

Our project focuses on the development of a parallel chess Al engine, leveraging C++ and
the OpenMP framework to accelerate the decision-making process in chess. We achieved
5.6x speedup on 8 cores.

2 Background

The main purpose of a chess engine is to be able to analyze a given chess board and find the
best move. This is done by considering different board positions that are multiple moves
into the future. If we want a chess engine to evaluate the best move by looking 4 or 5 moves
deeper into the future, the number of possible board states grows exponentially as the
depth increases. Thus the goal of a chess engine is to explore a vast array of potential moves
and their resulting positions in a reasonable amount of time.

This task is managed by the combination of the minimax algorithm and alpha-beta pruning
techniques. Minimax is a decision-making algorithm used in two-player games such as
chess to find the optimal move by minimizing the maximum possible loss, assuming
optimal play from the opponent. It explores a game tree by recursively evaluating potential
future moves to a certain depth. Alpha-beta pruning enhances this by reducing the number
of nodes evaluated in the minimax algorithm. It does this by introducing two values, alpha
and beta, which represent the minimum score that the maximizing player is assured and
the maximum score that the minimizing player is assured. If it becomes clear that a move
will not improve these bounds, i.e. the maximizing player has a better option elsewhere,
further exploration of that move can be cut off early (see Figure 1). This significantly
reduces the search space and improves efficiency without affecting the outcome of the
decision.



—_— Max

—_— Min

Terminal
node

Figure 1: Alpha-Beta Pruning (Javapoint)

Key Data Structures: Aside from the bitboards utilized by the chess engine, the searching
algorithm relies on essential data structures such as move lists and search stacks to
traverse the game tree efficiently. Move lists store legal moves generated for a given
position, facilitating move ordering and pruning strategies. Search stacks maintain
information about the current ply and aid in managing recursive function calls during the
search process.

Key Operations: The core operations of the the chess engine involve move generation, move
ordering, and evaluation. Move generation constructs a list of legal moves for a given
position, enabling the exploration of potential move sequences. Move ordering prioritizes
moves based on heuristic criteria, such as captures and promotions, to optimize alpha-beta
pruning efficiency. Evaluation computes the desirability of board states based on positional
factors and material balance, guiding the search toward more promising branches of the
game tree.

The main opportunity for parallelism is in the search for the best move. Board states are
represented as position objects which contain all the information about the game state. The
game tree, representing potential moves and their outcomes, is inherently expansive. Our
approach involves dissecting this tree into multiple branches at the root level, each
assigned to a separate thread for exploration. This division allows simultaneous traversal of



different parts of the game tree, significantly enhancing the breadth and depth of the search
within the same computational time frame. By parallelizing the search, we dramatically
increase the number of positions analyzed within a given time, directly contributing to
more strategic and informed decision-making by the Al. This can significantly reduce the
time needed to make an informed decision. It can also allow the chess Al to look farther
into the future in the same amount of time compared to a sequential version, allowing it to
choose better moves.

Because the value of a parent node cannot be determined until all its children are
evaluated, the dependency of child nodes on parent nodes complicates parallelization,
introducing synchronization points that can limit parallel efficiency. Furthermore, different
branches of the game tree can have vastly different complexities and depths, leading to
divergent execution paths among parallel threads. Some threads might quickly reach a
pruning point or a shallow depth, while others might need to explore deeper, more complex
branches, resulting in workload imbalance. This leads to challenges with mapping the
workload effectively so that threads have similar amounts of work.

3 Approach

We utilized C++ and openMP to build our parallel chess engine. Since our central aim was
studying parallelism in the search algorithm, we utilized a chess library “Libchess” to
outsource complicated tasks like move generation and game state representation so we
could focus on specifying the evaluation and search. We also utilized their testing suite to
build our baseline sequential engine.

We employed two main approaches to parallelize the search algorithm:
3.1 Shared Hash Table

The shared hash table approach in parallel search involves utilizing a common hash table,
also known as a transposition table, which can be accessed by multiple processes or
threads concurrently across multiple processor cores or processors. This approach
leverages shared memory to enable efficient communication and data sharing among the
parallel search instances. Shared hash tables are implemented as dynamically allocated
memory treated as a global array, with each entry storing information about positions and
their corresponding evaluations.



Concurrency in accessing the shared hash table introduces challenges related to
synchronization and data consistency. Concurrent writes and reads to the same memory
address may lead to corrupt data, resulting in significant issues for the search process. To
mitigate such problems, synchronization mechanisms such as locks are commonly
employed. These locks ensure that only one thread can access a particular hash table entry
at any given time, preventing data corruption and ensuring data integrity.

Various techniques have been proposed to implement shared hash tables efficiently in
parallel search algorithms. One approach involves using atomic locks to synchronize access
to hash table entries, ensuring mutual exclusion and preventing concurrent modifications.
Another approach is to implement lock-less algorithms, such as the XOR technique, which
eliminates the need for locks by exploiting bitwise operations to ensure data consistency.

In our implementation, we utilize a Transposition Table (TT), a global memory structure
designed to store and retrieve information about previously encountered game positions.
Each thread in our parallel search algorithm is tasked with exploring a distinct subset of
moves from the current game position. Utilizing OpenMP we orchestrate concurrent
execution of these threads, enabling them to independently traverse the game tree and
evaluate potential moves. Critical sections are employed to synchronize access to shared
resources, particularly the Transposition Table. This ensures that concurrent read and
write operations do not compromise data integrity or lead to race conditions. Furthermore,
when updating critical variables such as the best score or principal variation (PV), only one
thread is permitted to modify these shared entities at a time. During execution, each thread
recursively invokes the search function to explore deeper levels of the game tree from its
assigned subset of moves. As threads complete their exploration, the results are collated to
determine the optimal move and score, incorporating contributions from all threads.

We experimented with various scheduling policies as well as chunk size granularities and in
our iterative procedure aimed to reduce the critical sections to reduce overhead due to
synchronization especially when writing to the TT.

3.2 Root Splitting

This approach to parallelizing the search for the best move is implemented by dividing the
decision tree’s root among several processors. This method leverages the power of
multi-core processors to speed up the search process by exploring multiple branches of the
tree concurrently, using algorithms like alpha-beta pruning to assess each move's
implications efficiently. For example, one thread will work on the branch stemming from
one move while another thread will work on the branch stemming from a different move.



This isis also achieved using openmp and C++ on the ghc machines. The algorithm would
first generate moves from the given position object. These moves would then be be
distributed to different processors in a dynamic schedule by openmp. Each of these cores
would independently evaluate the board with its new move, performing the alpha-beta
pruning algorithm. This method would allow for simpler implementation but at the cost of
less speedup.

4 Results

4.1 Performance Metrics

For this project, we measured the performance of our parallel chess search algorithms
primarily through two metrics: parallel speedup and nodes per second.

Parallel Speedup here is the ratio of the execution time of the search algorithm on a single
thread to its execution time on multiple threads. This helps us understand the efficiency
gains from parallel execution.

Nodes per second measures the number of positions or nodes the search algorithm
explores in one second which gives us a good indication of search speed.

We also considered the evaluation score of the resulting move which tells us about the
quality of the move suggested by the algorithm.

4.2 Experimental Setup

We conducted our experiments on GHC machines from 1-8 threads. We also experimented
with using the PSC machines up to 64 threads. We utilized 20+ different initial positions
representing a variety of different chess board configurations for testing.

Problem Size

Problem size in our situation would be the depth of the search tree so we tested our
configurations and solutions with varying depths. For example, a depth of 4 would mean in
total 2 moves from the white side and 2 moves from the black side.

Chunk Size
For dynamic assignment policies, we experimented with varying chunk sizes testing how
different task granularities affected performance.



4.3 Performance Analysis
4.3.1 Shared Transposition Table:

Results on GHC:

NPS vs Number of Threads

== Depth7 == Depth9 Depth 11 == Depth 13

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000

1 Thread 2 Threads 4 Threads 6 Threads 8 Threads
Speedup vs Number of Threads
== Depth 7 == Depth9 Depth 11 == Depth 13
6 —
4 -
21
0 f f } f f
1 Thread 2 Threads 4 Threads 6 Threads 8 Threads
1 Thread 2 Threads 4 Threads 6 Threads 8 Threads
Depth 7 1 1.8 3.31 3.13 5.29
Depth 9 1 1.8 3.35 3.3 5.49
Depth 11 1 1.8 3.34 3.33 5.47
Depth 13 1 1.8 3.36 3.33 5.26




The performance analysis of the system as the number of threads increases shows a clear
pattern of improvement in both Nodes Per Second (NPS) and speedup ratios. With the
initial increase from 1 to 4 threads, there is a substantial boost in NPS and speedup,
indicating that the system is efficiently leveraging the additional computational resources.
This improvement suggests that the parallelization strategy effectively minimizes overhead
from communication and synchronization among threads.

As the thread count further increases to 6 and 8, NPS continues to rise, reflecting the
system's capability to handle higher loads and execute more operations per second.
However, while the speedup also improves, the rate of increase in efficiency begins to
plateau. This trend indicates that, although additional threads contribute positively to
processing more nodes, the relative gain in speedup starts to diminish. This marginal
reduction in speedup gains could be attributed to increased coordination costs and
potential bottlenecks that become more pronounced at higher thread counts. Despite this,
the overall performance metrics affirm that the system scales well with increased
threading, consistently enhancing throughput and computational efficiency.

While testing with varying depths, we found that the performance does not change
significantly, but there is a slight decrease in speed-up as we increase the depth. This
observation suggests that the algorithm's efficiency remains relatively stable across
different depths of search. However, as the depth increases, the workload becomes more
complex, potentially leading to increased coordination overhead and reduced parallel
efficiency.

Testing on PSC

Nodes Per Second (NPS) vs. Num Threads Speedup vs. Num Threads
6,000,000.00 20

4,000,000.00

Speedup

2,000,000.00

Nodes Per Second (NPS)

0.00 0.0
10 20 30 40 50 60 10 20 30 40 50 60

Num Threads Num Threads

The performance analysis of the program on PSC machines reveals interesting trends in
speedup as the number of threads increases. Initially, the speedup increases significantly
from 1 thread to 4 threads, indicating effective parallelization and utilization of additional



computational resources. However, beyond 4 threads, the speedup experiences
fluctuations, with a peak observed at 16 threads. Subsequently, the speedup decreases
slightly as the number of threads continues to increase to 32 and 64. The poor performance
on PSC below 8 threads is unexpected and is likely an issue with differences in hardware
architecture or high load contention on PSC.

To identify bottlenecks and areas for optimization in our shared transposition table
implementation we used “perf”. The analysis reveals that a substantial portion of execution
time, approximately 36.77%, is attributed to functions within the libgomp library,
indicating the overhead incurred by managing OpenMP threads. Additionally, another
25.42% of the time is spent within libgomp which implies that the key reason for poor
performance is parallelization overhead and thread management.

4.3.2 Root Splitting

speedup vs. thread count
@ speedup (depth=7) @ speedup (depth=6)

speedup

2 4 6 8

thread count



nodes per second vs. thread count
@ nps (depth=7) @ nps (depth=6)
2.0E+7

1.5E+7

1.0E+7

nodes per second

5.0E+6

2 4 6 8

thread count

From the speedup graph, we can observe that both curves, representing depths 6 and 7,
show an increase in speedup as the number of threads increases from 1 to 8. This trend is
consistent with the expected behavior in parallel computing, where utilizing more threads
can significantly reduce computation time by distributing the workload across multiple
cores. The nodes per second graph also follows this trend which is in line with the results
seen from the speedup. As more threads are used, more nodes are being processed at the
same time which means higher nodes per second.

The graphs increase more noticeably when going from 1 to 4 threads. However, the rate of
increase in speedup and NPS slows down slightly as more threads are added beyond 4. One
reason for the diminishing speedup can be attributed to the overhead of managing more
threads by OpenMP. Another reason for non-ideal speedups is root splitting inherently does
not utilize as much parallelism as other techniques like the shared transposition table. Once
processors get their new boards from the root, they work independently on their branches,
without more parallelism.

We see that for 8 threads the NPS for a depth of 6 is slightly higher than the nps for a depth
of 7. This is in line with the fact that the speedup for using a depth of 6 is slightly higher
than the speedup for a depth of 7. This is likely because with a depth of 7, the effects of
pruning the tree become more prominent. There are more opportunities for pruning which
can lead to a larger load imbalance between the processors, leading to less speedup.



speedup vs. search depth
5.00

4.75

4.50

search speedup

4.25

4.00
3 4 5 6 7

depth

We also tested changing the search depth while keeping the thread count constant at 8
threads. From depths 3 to 5, an increase in speedup is seen, but from depth 5 to 7 it starts
to decrease. The decrease in speedup past the depth of 5, as explained earlier, can be
attributed to the effects of pruning being more prominent, leading to more load imbalance.
The main reason for the increase is that at a depth of 3, the number of nodes being
evaluated is exponentially smaller than the number of nodes being evaluated at higher
depths. Therefore, a higher percentage of the is spent on thread management. With more
nodes, there is more time being spent on the actually search and evaluation.

Perf report output from depth=3:

timing-tests timing-te;ts .] libchess::Position::make_move
timing-tests 1libgomp.so.1.0.0 .] 0x00000000000207b8
timing-tests timing-tests .] eval::evaluate

timing-tests timing-tests .] search::qsearch_impl

Perf report output from depth=>5:

timing-tests timing-tests .] libchess::Position::make_move
timing-tests timing-tests .] eval::evaluate

timing-tests timing-tests .] search::SearchGlobals::stop
timing-tests timing-tests .] search::qsearch_impl

We see that for depth=3, thread management (libgomp.s0.1.0.0) is the second most time
consuming function at about 21%, while in the output from when depth=5, the thread
management is not taking up a significant portion of the total time as it is not in the top 4
functions.



search speedup vs. chunk size

1.00
0.75
[=
pm}
o
8
o 0.50
e
@
@«
W
0.25
0.00
2 4 6 8
chunk size

Since this implementation used a for loop with a dynamic schedule, we experimented with
different chunk sizes. We found a steady decline in search speedup as chunk size increased.
This is likely due to a higher load imbalance. Most chess positions have between 20-40 legal
moves, so changing to a larger chunk size does provide many benefits in terms of decreased
thread management. It leads to more load imbalance since for example if there were 4
threads, 40 legal moves, and chunk size 8, one thread could be assigned 8 positions to work
on at the end while the other threads sit idly. Thus, we stuck with a chunk size of 1.

5 Discussion

In our parallel chess Al engine, we explored two search parallelization strategies: Shared
Transposition Tables and Root Splitting. Each approach provided unique benefits and
challenges. Shared Transposition Tables were effective in reducing the search space and
improving data reuse across threads. However, ensuring data integrity impacted scalability.
The decision to use multi-core CPUs for our Parallel Chess Al Engine was strategically
sound, given the nature of the application. This method showed effective speedups even at
higher depths. Root splitting simplified implementation by distributing the decision tree’s
root across processors allowing independent branch evaluations. Both strategies had
significant performance improvements with multiple threads with TT offering higher
speedups due to more efficient parallelism in complex trees. Root Splitting is beneficial due
to its lower complexity and is suitable for shallower trees.



CPUs excel in managing complex, interdependent tasks such as the ones required by our
chess engine, which utilizes parallelism extensively to handle the decision trees and
synchronization crucial for the minimax algorithm and alpha-beta pruning. CPUs offer
superior control over task scheduling and concurrency, which is essential for efficient
thread management and synchronization in our application. Unlike GPUs, which are
optimized for independent parallel tasks, CPUs are better suited for applications like ours
where tasks are highly interdependent and require frequent communication between
threads.

6 References

- Kruskal, C.,, Rudolph, L., & Snir, M. (1988). Efficient Synchronization on Multiprocessors
with Shared Memory. ACM TOPLAS, Vol. 10, No. 4.

- Hyatt, R, & Mann, T. (2002). A lock-less transposition table implementation for parallel
search chess engines. ICGA Journal, Vol. 25, No. 1.

- Maier, T, Sanders, P, & Dementiev, R. (2016). Concurrent Hash Tables: Fast and
General?(!). arXiv:1601.04017.

- https://www.javatpoint.com/ai-alpha-beta-pruning

- https://github.com /MKk-Chan/libchess

- https://github.com/MKk-Chan/LibchessEngine

7 Work Distribution

50-50

Shared Transposition Tables - Priyanshi
Root Splitting - Teddy


https://www.javatpoint.com/ai-alpha-beta-pruning
https://github.com/Mk-Chan/libchess
https://github.com/Mk-Chan/LibchessEngine

